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ABSTRACT 

Empirical statistical modeling of earthquake interevent time-gaps has over the years generated enormous interest 

to geoscientists and other professionals, for a variety of applications relating to mitigation of earthquake risk.                                

In this study, we estimate probabilities of earthquake recurrence in the Kumaun-Garhwal region of the central Himalayan 

belt, using a set of internationally catalogued 44 moderate-to-large ( )5 6.3bm≤ ≤
 independent earthquakes, that occurred 

there during a period of 60 years (1958-2017). We subjected the interevent time intervals of these earthquakes to detailed 

stochastic processing, to examine the efficacy of each of the four different probability distribution models, viz. exponential, 

gamma, lognormal and Weibull, and found that, the lognormal model best represents the observed data in this case.                  

The statistical inferences drawn are based essentially on two goodness-of-fit tests: (i) Maximum Likelihood Estimation 

(MLE) with an improvement over the Akaike Information Criterion (AIC) and (ii) the non-parametric Kolmogorov-

Smirnov (K-S) test. In addition, the surrogate Fisher Information Matrix (FIM) approach is utilized for uncertainty 

estimation. As a measure of seismic hazard, we determined the earthquake potential in the study region, in terms of 

conditional probabilities of future earthquakes, for varying elapsed times of assumed seismic quiescence, since the last 

event detected on 06 February 2017 at the time-complete catalog.  
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INTRODUCTION  

Earthquakes occur as a consequence of global plate tectonic motions leading to deformation, that causes 

progressive build-up of strain in the upper brittle part of the earth’s crust. The elastic stress steadily accumulating in the 

lower ductile part of the crust also gets continually transferred to the upper crust part which is eventually stressed to a 

critical limit resulting in fault rupture. The stress drop after relaxation resets stage for the next cycle of earthquake 

preparation, and so on. Such interactions among different spatio-temporal systems, govern the complex nonlinear 

Geodynamics of earthquake sequences. Despite this reality, one may also consider earthquakes as a simple point process in 

space and time, by ignoring its temporal nature due to limited event-time duration and spatial nature, due to a finite extent 

of a rupture zone (Utsu 1984; Anagnos and Kiremidjian 1988). Besides, earthquake processes in seismically active zones 

are observed to be partially stochastic (Shen et al. 2007; Vere-Jones 2009). Thus, it is important to study various statistical 

properties of earthquake sequences in a given region towards assessment of earthquake hazard in terms of conditional 

probability of future earthquake events in that region. Such a study serves a useful purpose in a wide variety of 

applications, including engineering designs, city planning, archaeological preservations and, indeed, estimation of 

International Journal of Applied and  
Natural Sciences (IJANS)  
ISSN (P): 2319-4014; ISSN (E): 2319-4022  
Vol. 6, Issue 5, Aug – Sep 2017; 31-44  
© IASET  



32                                                                                                                                                                                                          S. Pasari & S. K. Arora 

 
Impact Factor (JCC): 4.8764                                                                                                                     NAAS Rating 3.73 

earthquake risk to structures on the ground and human population, based on their vulnerability quotient. 

The present study area lying within the grid bounded by 29-31oN and 79-82oE (Figure 1) Encloses the                   

Kumaun-Garhwal region of the Central Himalaya. This particular region is seismotectonically quite active as it it is 

traversed by a number of major fault zones that keep reactivating time and again causing moderate to large earthquakes.          

A south, south-verging megathrust fault forming the Main Central Thrust (MCT) with its several imbricate branching faults 

separate this region from the Main Boundary Thrust (MBT). The lesser Himalayan belt between the MBT and MCT also 

has sub-units demarcated by several major thrusts. Strongly folded and imbricated weakly metamorphosed sedimentary 

series of rocks, crystalline sequence of medium-to-high grade metamorphic rocks of Ordovician and early Miocene age, 

and fossiliferrous sediments of Upper Proterozoic to Middle Eocene age constitute the geotectonic setting of the study 

region (Valdiya 1998; Yin 2006). The root of several nappes, clippen, duns, and lakes can be observed in this sub-unit of 

the Himalayan orogen (Valdiya 1998).  

Physical and deterministic modeling of earthquake sequences from geological, paleoseismological or geodetic 

data are, no doubt, valuable. However, these approaches necessitate to gather field observations intensively over prolonged 

periods of time and thus are often expensive, cumbersome and time consuming. Therefore, as an alternative approach,          

it is motivating to study statistically the temporal characteristics of earthquake intervened times leading to an assessment of 

seismic hazard. 

In the present work, we concentrate on the empirical statistical distribution of time intervals between successive 

earthquakes in the Kumaun-Garhwal Himalaya. We examine the applicability of different models, viz. Exponential, 

gamma, lognormal, and Weibull. Although, each of these distributions has notable advantages in earthquake modeling 

(Utsu 1984), we identify a model that best represents the observed data of earthquakes in that region. It may be noted that 

we do not need to take into account faulting parameters including source mechanism, hypocentral depth,                     

source volume, etc.. Our main aim is to determine conditional probability of future earthquakes in the study region based 

on the best-fit probability model. Such conditional probability estimates also serve to assess seismic hazard in the region.  

REGIONAL  EARTHQUAKE DATA  

The present study utilizes real, complete and homogeneous data set of 44 moderate-to-large earthquakes in the 

body-wave magnitude range ( )5 6.3bm≤ ≤  that occurred in the study region over a period of 60 years (1958–2017).         

All of these earthquakes are shallow-focus with their sources within the crust at depths mostly not exceeding about 50 km 

(Figure 1). These data have been adopted from the earthquake catalog of the International Seismological Centre (ISC) after 

a careful scrutiny by picking up only independent events, dropping out the dependent ones such as foreshocks,              

aftershocks and seismic swarms or clusters. The upper limit of magnitude (mb 6.3) has been consistent with the largest 

value registered over the data period since 1958, while the lower cutoff magnitude (mb 5.0) is set by us taking into account 

that earthquakes smaller than this size are of no consequence worth considering from the hazard point of view. The 

epicentral locations, focal depths, magnitudes, and times of occurrence of these earthquakes are summarized in Table 1. 

The largest event (mb 6.3) in the compiled list severely jolted the Chamoli district of Uttarakhand on March 28, 1999, 

whereas the last listed event (mb 5.3) that occurred near Pipalkoti in Uttarakhand on February 06, 2017 produced moderate 

ground motion. However, these earthquakes generated considerable discussion on engineering consequences as 

experienced during the long-debated Tehri Dam construction activity in the Garhwal Himalaya (Kayal 2001; Bisht 2008).  
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The uncontaminated data set constituted by earthquake events selected in the present study ensures that the 

random samples of earthquake intervened times are truly independent and identically distributed                                       

(hereafter referred to as IID type events)). For obtaining such an IID data set, a window-based spatio-temporal type 

filtering is adopted. This approach aims to appropriately identify foreshocks and aftershocks, and exclude them from the 

list, being disqualified for the present analysis. The criterion used relies on the following conditions, according to which a 

dependent event is one that (a) it lies on the same fault which the main (parent) earthquake ruptured and its source is not 

far away (typically, within about 50 km) from that of the parent event, (b) it precedes or succeeds the main event,               

within a small time marking temporary quiescence, and (c) it is necessarily of a lower magnitude, quite often much lower, 

as compared to the main event.  

In our data set, we need to homogenize magnitudes. We chose to retain the body-wave magnitude (mb) as 

standard, since a large majority of the events in the original ISC catalog is assigned such a magnitude.                               

We converted magnitudes of the remaining events, reported with either local magnitude (ML) or surface-wave magnitude 

(Ms), making use of the following well known empirical relations (Gutenberg and Richter 1956; Abe 1981; Kanamori 

1983; Scordilis 2006). 

( ) 21.5 2.2 0.63 2.5 1.27 1 0.016B b B S S L Lm m m M M M M= − = + = − −
       (1) 

The magnitude mb or mB follows from the short-period (about 1 sec) initial P-wave amplitude,                                    

which was introduced by Gutenberg (1945a, 1945b) after the installation of the World-Wide Standardized Seismograph 

Network (WWSSN) to routinely record the short-period vertical-component seismograms. The surface-wave magnitude MS 

is usually determined from the maximum amplitude of Rayleigh type long-period seismic surface waves with a period of 

about 20 Sec (Gutenberg 1945a), whereas the local magnitude ML is determined from the maximum signal amplitude 

recorded on a Wood-Anderson seismogram with predominant period usually within 0.1–3.0 Sec (Richter 1935). 

In stochastic modeling and analysis of earthquake occurrences, as in the present study, completeness of the print 

catalog of reported earthquakes above a certain magnitude value is of utmost importance as a prerequisite to detailed 

processing. In this regard, we performed a magnitude-frequency based visual cumulative method (VCM) test                  

(Mulargia and Tinti 1985) on the original ISC catalog of earthquakes covering the 60-year period (1958-2017),                   

in the operative magnitude range ( )5 6.3bm≤ ≤ . A linear fit in the least-squares sense is obtained from the scatter plot 

between time (in years) and the cumulative number of earthquake events in the chosen magnitude range.                             

A catalog is designed to be ‘time- complete’ if the trend of the observed data stabilizes to approximately a straight line 

(Mulargia and Tinti 1985). In other words, it signifies that the earthquake rates and moment releases are ultimately steady 

over the time periods considered (Mulargia and Tinti 1985). Of course, we are aware that, at times, the possibility of 

extended aftershock durations in low-strain intercontinental regions (e.g., Stein and Liu 2009) and the possibility of 

substantial variations in seismic activity (e.g., Page and Felzer 2015) may raise some pertinent questions about the typical 

linear assumption in respect of the catalog completeness. However, in the present application using the filtered data set,              

it is observed that the graph between time and the cumulative event count has a linear relationship with R-square value at 

0.94 (Figure 2), which evidently satisfies the catalog completeness requirement very well.  
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METHODOLOGY 

Stochastic modeling with regard to earthquake recurrence in a given region generally involves a three-step 

process. The first step highlights typical assumptions and model descriptions; the second step deals with the model 

parameter estimation; the third step aims at the model validation from several goodness-of-fit tests. Once the best-fit 

probability model is identified for the given data set in a region, seismic hazard in terms of estimated conditional 

probability of earthquake occurrence in that region can be easily determined. 

In the present work, four important models of continuous probability distributions, namely exponential, gamma, 

lognormal and Weibull have been considered. The probability density functions of these distributions along with the 

respective model parameters, their domains and specific roles are provided in Table 2 (Johnson et al. 1995;                         

Murthy et al. 2004). It is seen that the exponential distribution is controlled by a scale parameter alone,                     

whereas the gamma, lognormal and Weibull distributions are controlled by a scale parameter (log-scale for lognormal) as 

well as a shape parameter. The scale parameter determines the spread of the distribution, while the shape parameter 

determines the shape or appearance of the distribution. Between these two controlling parameters, the shape parameter is 

more important in modeling as it depicts the monotone nature of the hazard function (Johnson et al. 1995). The exponential 

distribution that does not have any shape parameter always provides only one type of appearance of its density function;           

it starts at the level of time 0,t =  and then monotonically decreases exponentially, always convex and stretched to the 

right as α  increases. Moreover, the hazard function of an exponential distribution is constant, signifying that the units               

(e.g., intervened time gaps) do not degrade with time. Although, this peculiar behavior of exponential distribution seems to 

contradict in a way the physical assumption in elastic rebound theory, it is considered to be the fundamental distribution in 

modeling earthquake sequences due mainly to the fact that the number of earthquakes in a region follows a Poisson 

process. Thus, theoretically, it seems appropriate to argue that earthquake intervened time intervals, which must follow an 

exponential distribution (see, for more details, Hogg et al. (2005)).  

Now, with the known density function ( )f t  of a positive random variable ,T  it is straightforward to obtain 

unique function, hazard  distribution function ( ),F t  survival action ( ),S t  hazard function ( ),h t  and reverse hazard 

function ( )r t  as follows: ( ) ( )
0

,
t

F t f u du= ∫  ( ) ( )1S t F t= − , ( ) ( )
( )

f t
h t

S t
= , and ( ) ( )

( )
f t

r t
F t

= . In the present context, 

the random variable T essentially denotes the earthquake interevent times (time interval between two successive events) 

providing a random sample { }1 2 43, , ,T T TL  of size 43, the total number of selected earthquakes in the present case being 

44 (Table 1).  

In order to determine the conditional probability of an earthquake above a certain magnitude to occur in an 

elapsed time, we need to introduce another random variableV , corresponding to a waiting timev . This conditional 

probability, in the time interval( ), vτ τ + , given that no earthquake in the same magnitude range has occurred in τ  years 

since the last event in a data set, can be expressed as:  

( ) ( ) ( )
( ) ( )| 0

1

F v F
P V v V v

F

τ τ
τ τ

τ
+ −

≤ + ≥ = >
−

           (2) 
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For estimating the scale and shape parameters of the four different probability distributions as mentioned above, 

the Maximum Likelihood Estimation (MLE) method is adopted not only because of its flexibility and wide applicability, 

but also for its ability to provide the uncertainty (asymptotic) measure in the estimates. In addition, a Fisher Information 

Matrix (FIM) based approach is employed as a surrogate tool to examine the uncertainty in the parameter estimates in 

terms of asymptotic variances and 95% two-sided confidence bounds in the following manner (Hogg et al. 2005).  

Let ( )p pI θ×  be the information matrix where ( )1 2, , , ,pθ θ θ θ= L  for some integer ,p  denotes the vector of parameters. 

Then, ( )p pI θ×  is given by  

( ) ( )( ) ( ) ( )2 2

, 1,2, ,
, 1,2, , , 1,2, ,

ln ; ;1
p p ij i j p

i j i ji j p i j p

f T L T
I I E E

n

θ θ
θ θ

θ θ θ θ× =
= =

   ∂ ∂
= = − = −      ∂ ∂ ∂ ∂   

L

L L        (3) 

Where E  is the expectation operator and ( );L T θ  is the log-likelihood function of n sample data 

points{ }1 2 3, , ,..., nt t t t . The FIM is a symmetric and positive semi-definite matrix that provides a measure of the amount of 

information an observed random sample carries about the unknown population parameter θ . This matrix is often 

combined with the Cramer-Rao lower bound theorem (Hogg et al. 2005) to estimate asymptotically the                           

variance-covariance matrix θ̂∑  of the estimated parameters ( )θ̂  as ( ) 1

ˆ
ˆnIθ θ

−
 ∑ ≥
 

; θ̂  is the maximum likelihood 

estimate ofθ . The ( )1 %δ−  two-sided asymptotic confidence bounds on the estimated parameters readily follow from 

the following inequality:  

( ) ( )2 2
1,2, , 1,2, ,

ˆ ˆ ˆ ˆ. .ii ii
i p i p

z V z Vδ δθ θ θ θ θ
= =

   − < < +
   

L L           (4) 

Where ( )
1,2, ,

ˆ
ii

i p
V θ

=
 
  L

 is the vector of diagonal entries in the variance-covariance matrix, and 2zδ  is the critical 

value corresponding to a significance level of 2δ  on the standard normal distribution (Hogg et al. 2005). 

DATA PROCESSING AND RESULTS 

The FIMs of four studied models of probability distributions are presented in Table 2, and for these models,          

the estimated values of the scale and shape parameters with the uncertainties in their estimates are given in Table 3.                

It is observed that the estimated shape parameters in both Weibull and gamma distributions are less than 1,                       

which suggests that the seismic hazard function (i.e. The failure rate due to earthquakes) provided by these two probability 

models is monotonically decreasing in the study region. Furthermore, compared with the exponential model, the Weibull 

model shows a ‘heavy-tailed’ behavior (the ‘tail’ is relatively thicker) in respect of the earthquake data set in this region.  

We now turn to make an assessment as to which of the four probability distribution models best represents the 

present data set of selected earthquakes. In this regard, we invoke two popular selection tests: the maximum likelihood test 

with an improvement upon Akaike Information Criterion (AIC) and the non-parametric Kolmogorov-Smirnov (K-S) test. 

The maximum likelihood test actually utilizes likelihood (or, log-likelihood) values to prioritize different competitive 
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models. Also, it assumes that the number of parameters in all the candidate distributions is the same. In order to do away 

with such a presumption, the Akaike criterion (AIC) is in modification expressed as 2 2lnAIC k L= − ,                       

where k represents the number of parameters in a model and ln L  denotes the log-likelihood value (Pasari and Dikshit 

2014). From such an improved formulation of the AIC, it is clear that it is able to account for the trade-off between a 

superior fit from number of parameters in a model and the associated model complexity (Hogg et al. 2005). The log-

likelihood and AIC values for each of the competing models are given in Table 4.  

On the other hand, in the non-parametric K-S test, we first construct the empirical distribution function nH  for n  

independent (IID type) random variables 1 2, , , nT T TL  as  

( )
1

1
i

n

n T t
i

H t I
n ≤

=

= ∑
                (5) 

Where 
iT tI ≤ is the indicator function, which equals 1 if iT t≤ , and 0 otherwise. This renders ( )nH t  a step 

function. Supposing that we have two competing models F and, the corresponding K-S distances are calculated as 

( ) ( )

( ) ( )
1

2

n
t

n
t

D sup H t F t

D sup H t G t

−∞< <∞

−∞< <∞

= −

= −
               (6)  

In the above expression (6), supt  denotes the supremium of a set of distances. If, we choose model ,F  

otherwise we choose the model. The K-S distance of each of the candidate models is included in Table 4,  and their relative 

closeness (separation) to empirical distribution function is graphically represented in Figure 3. 

From a scrutiny of the numerical figures available in Table 4, it turns out that the AIC value of the lognormal 

probability distribution model stands out minimum (110.97) among those of the other models. This implies that the 

lognormal distribution is the most optimum fit, considering the trade-off between the model complexity and the model fit, 

at the interevent time intervals of the present data set of earthquakes in the study region. The K-S test also favours the 

lognormal distribution, being the ‘closest’ (smallest separation) to the empirical distribution function of the observed data 

(Figure 3). Therefore, it is well justified to apply the lognormal probability model to determine the conditional probability 

of future earthquakes in the study region.  

We have consolidated in Table 5 the estimated conditional probabilities of occurrence of an earthquake in the 

magnitude range 5 to 6.3 in the study region within the next 1 to 5 years, assuming elapsed times (absence of earthquake) 

over similar time-intervals since the last detected event on 06 February 2017 in the observed data set. These results are 

illustrated by a family of curves plotted in Figure 4 depicting conditional probabilities of future earthquakes in the coming 

years in the study region. These curves also serve to infer seismic hazard and the associated risk to life and property in the 

region.  

DISCUSSIONS AND CONCLUSIONS 

In recent years, the probability distributions of earthquake intervened times have been regularly used to deduce 



Earthquake Probabilities in the Kumaun-Garhwal Himalaya from                                                                                                                                 37 
Stochastic Modeling of Moderate-to-Large Seismic Events 

 
www.iaset.us                                                                                                                                                     editor@iaset.us 

important information such as the recurrence pattern and mean waiting time for future earthquakes for various scientific 

and engineering applications including smart city planning, seismic hazard assessment and risk mitigation,                             

and nationwide earthquake insurance program (Pasari and Dikshit 2014). The best-fit probability model,                      

given a set of systematically catalogued earthquakes, can not only determine future seismicity in active regions, but also be 

employed as a secondary tool to realize the physical mechanism of earthquake preparation in those regions (Hsu et al. 

2009). At times, the probability model formulation is further simplified by reducing the complex dynamics of the 

‘earthquake machine’ to conform to a point process (Utsu 1984). This in turn implies that the complexities involved in the 

physics of rupture initiation, propagation and stopping are ignored, and the earthquakes are considered to be ‘events’                 

characterized only by spatio-temporal occurrence pattern (time, location and magnitude). In this regard, the present study 

by examining four different probability distributions in the Kumaun-Garhwal region of the Central Himalaya and fixing 

one that is most optimum projects future seismicity in that region reasonably well.  

Quite often, it has been argued that continuous or campaign mode geodetic observations that enable mapping of 

elastic strain rates through measurements of displacement fields is a more realistic way than the probabilistic approach to 

earthquake hazard assessment in a seismically active region (Shen et al. 2007). The geodetic data reveal tectonic plate 

kinematics and the associated Geodynamics, whereas the probabilistic earthquake modeling addresses the stochastic 

repeating nature of the earthquake process. In order to lend credence to the latter approach, many research groups routinely 

collect data from networks of GPS (Global Positioning System) to decipher horizontal deformations and strain rates to 

integrate them with regional historical earthquake data towards an improved understanding of earthquake recurrence 

processes (England and Molnar 1997; Qin et al. 2002; Pancha et al. 2006; Shen et al. 2007; Hsu et al. 2009).                     

Thus, we are inclined to believe that empirical stochastic modeling can be gainfully combined with geological, 

paleoseismological and geodetic investigations to address many open questions on earthquake triggering processes in the 

Himalayan orogen. 

For the present, it turns out that the lognormal probability distribution best represents the interevent times through 

the internationally catalogued earthquakes of moderate to large magnitude over the last six decades in the                   

Kumaun-Garhwal region. The estimated conditional probabilities of future earthquakes in that region, for varying elapsed 

times of assumed seismic quiescence since the last known event on 06 February 2017, point to moderately large seismic 

hazard in the central Himalayan domain.  
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Table 1: List of Selected Independent Earthquakes ( )5 6.3bm≤ ≤  in the Study Region 

S.No. 
Date Location Source 

Depth 
Magnitude 

(mb) 

Year Month Day 
Latitude 

(ON) 
Longitude 

(OE) 
(km) (*) 

1 1958 12 28 29.926 79.900 15 5.6 (MS 5.9) 
2 1964 9 26 29.960 80.460 50 5.9 
3 1965 5 13 29.620 80.190 75 5.1 
4 1966 6 27 29.620 80.830 33 6.0 
5 1968 1 5 30.410 79.250 07 5.0 
6 1968 5 31 29.910 79.920 33 5.0 
7 1969 3 3 30.040 79.840 18 5.1 
8 1969 6 22 30.500 79.400 15 5.3 
9 1976 5 10 29.327 81.458 22.2 5.2 
10 1976 9 29 29.502 81.508 33 5.0 
11 1978 1 7 30.513 79.404 33 5.1 
12 1979 5 20 29.932 80.270 15.8 5.7 
13 1980 7 29 29.629 81.091 23.3 6.1 
14 1981 3 06 29.799 80.664 23.6 5.1 
15 1984 2 19 29.843 80.544 21 5.1 
16 1984 5 18 29.520 81.793 x 5.6 
17 1990 9 21 29.985 79.907 18.7 5.1 
18 1991 12 9 29.512 81.611 02.9 5.6 
19 1996 3 26 30.692 79.103 41.8 5.3 
20 1997 1 5 29.874 80.565 24.9 5.4 
21 1999 3 28 30.511 79.421 22.9 6.3 
22 2001 11 27 29.691 81.716 22.6 5.5 
23 2002 6 4 30.566 81.420 10 5.4 
24 2003 4 4 30.086 80.040 27.7 5.1 (ML 5.1) 
25 2003 5 27 30.556 79.337 28.9 5.0 
26 2004 10 27 30.848 81.189 x 5.2 (MS 5.0) 
27 2005 9 5 30.454 79.247 48.3 5.1 (ML 5.1) 
28 2005 10 25 30.127 81.111 41.5 5.0 
29 2005 12 24 30.515 79.250 36.9 5.2 
30 2006 2 1 30.318 80.388 09.5 5.2 (ML 5.3) 
31 2006 8 5 29.865 80.188 14.5 5.1 (ML 5.0) 
32 2008 9 4 30.242 80.382 08.9 5.0 
33 2009 10 3 30.018 79.827 24.5 5.1 (ML 5.1) 
34 2010 2 22 29.987 80.069 20.5 5.2 (ML 5.3) 
35 2010 6 22 29.910 80.460 20.4 5.1 
36 2011 4 4 29.627 80.729 17.4 5.6 
37 2011 5 4 30.216 80.415 23 5.1 (ML 5.0) 
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Table 1: Contd., 
38 2011 6 20 30.551 79.319 26.6 5.2 (ML 5.2) 
39 2012 2 26 29.614 81.005 17 5.1 (ML 5.0) 
40 2012 7 28 29.852 80.599 23 5.2 (ML 5.2) 
41 2012 11 11 29.405 81.447 27 5.4 (ML 5.6) 
42 2015 4 1 30.515 79.539 18 5.0 
43 2016 12 1 29.902 80.551 21.3 5.2 
44 2017 2 6 30.670 79.210 10 5.3 

             (*) For some of the earthquakes, the original values of other types of magnitude, as reported in the ISC 

catalog, are provided within brackets alongside the corresponding converted value.  

 x Not available. 

 

Figure 1: The Study Area in the Kumaun-Garhwal Region of Central Himalaya Showing Epicentral Locations 
(Colour-Coded Solid Circles) of Independent Earthquakes (5 6.3bm≤ ≤ ) that Occurred there During the Period 

1958–2017 (As Listed in Table 1) 

 

Figure 2: Illustration of the Time-Completeness Test Conforming to VCM (Mulargia and Tinti, 1985) Operated on 
the Catalog of Earthquakes in the Study Region that Gave the Working Data Set in the Magnitude Range 

5 6.3bm≤ ≤  (As Listed in Table 1) Covering a Period of Six Decades Since 1958. The Best-Fit Linear Trend through 
the Data Points of the Cumulative Number of Earthquakes as a Function of Time Confirms ‘Completeness 
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Table 2: Probability Distributions, Density Functions (PDF) and Associated Fisher Information Matrices (FIM) 

Probability Density Function Parameters FIM ( )( )I θ  

Distribution Pdf Domain Role Domain  

Exponential 
 

 scale  
 

Gamma † 

 
 

scale 

shape  

 

Lognormal 
 

 
log-

scale 

shape 
 

 

Weibull † 

 
 scale 

shape  

 
† ( )xψ  and ( )xψ ′ denote the digamma function and its first derivative respectively 

Table 3: Estimated Values of the Scale (α ) and Shape (β ) Parameters Along with Their Asymptotic Standard 
Deviations and Confidence Bounds for Four Different Types of Probability Distribution Models Studied 

Model 
Parameter 

Value 

Asymptotic 
Standard 
Deviation 

Confidence Interval (95%) 

Lower Upper 

Exponential α  1.3522 ασ  0.2062 0.9480 1.7564 

Gamma 
α  1.6396 ασ  0.4116 0.8329 2.4463 

β  0.8248 βσ
 0.1539 0.5232 1.1264 

Lognormal 
α  –0.3044 ασ  0.1227 -0.5449 -0.0639 

β  1.1381 βσ
 0.1736 0.7978 1.4784 

Weibull 
α  1.3004 ασ  0.2250 0.8594 1.7414 

β  0.9281 βσ
 0.1104 0.7117 1.1445 
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Figure 3: Illustrative Plot of the K-S Test Showing Cumulative Distribution Function as the Difference (Separation) 
between the Estimated Distribution Function and the Empirical Distribution Function for Each of the four 

Probability Models Applied to the Observed Earthquake Data Set 

Table 4: Model Selection and Validation by two Different Goodness-of-Fit Tests 

Model Maximum Likelihood Test K-S Test 
distribution ln L  AIC K-S distance 
Exponential –55.98 113.95 0.0992 
Gamma –56.25 116.49 0.0864 
Lognormal –53.49 110.97 0.0467 
Weibull –55.75 115.50 0.0800 

     ln L : log-likelihood value; AIC : value using Akaike Information Criterion. 

Table 5: Estimates, Based on Lognormal Distribution Model, of the Conditional Probabilities of an Earthquake 

( )5 6.3bm≤ ≤  to Occur in the Next v  Years in the Study Region, Assuming Absence of Earthquake in the Same 

Magnitude Range over τ  Years (Elapsed Time) Since the Last Event on 06 February 2017 

v  (Years) 
τ          Elapsed Time (Years) Since the Last Listed Event on 

February 06, 2017 
1 (2018) 2 (2019) 3 (2020) 4 (2021) 5 (2022) 

1 0.52 0.43 0.37 0.33 0.29 
2 0.72 0.64 0.57 0.52 0.48 
3 0.83 0.76 0.70 0.65 0.61 
4 0.88 0.83 0.78 0.74 0.70 
5 0.92 0.87 0.83 0.80 0.76 
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Figure 4: Conditional Probability Curves (Construed as Seismic Hazard Curves) of Occurrence of an Earthquake 
of Magnitude 5 6.3bm≤ ≤  in the Coming Years in the Study Region for an Elapsed Time (Assumed Earthquake 

Absence) of 1,2,3,4,5τ =  Years since the Last Event on 06 February 2017




